Abstract for ICAMDATA05, Meudon, France October 15–19, 2006

M_F-Dependent Lifetimes Due to Hyperfine Induced Interference Effects

Martin Andersson,¹ Ke Yao,^{1,2,3} Tomas Brage,¹ Roger Hutton,^{2,3} Per Jönsson,⁴ Yaming Zou,^{2,3}

¹ Department of Physics, Lund University, Box 118, S-221 00 Lund, Sweden

² The Key lab of Applied Ion Beam Physics, Ministry of Education, P.R. China

³ Shanghai EBIT lab, Institute of Modern Physics, Fudan University, Shanghai, P.R.

China

⁴ Nature, Environment, Society, Malmö University, Sweden

martin.andersson@fysik.lu.se

Domain : other

We report on a theoretical investigation of M_F -dependent lifetimes due to interference between different types of multipole transitions, and in particular the $3d^{10} S_0 - 3d^9 4s^3 D_3$ transition in Nickel-like ions. For pure states this decay is only allowed through a magnetic octupole (M3) transition, but in the presence of a nuclear spin an electric quadrupole (E2) transition is induced by the hyperfine interaction, and the interference between the two types of multipoles makes the lifetimes of the hyperfine levels M_F -dependent.

Extensive Multiconfiguration Dirac-Fock calculations were performed to calculate the $3d^{10} {}^{1}S_0 - 3d^94s {}^{3}D_3$ M3 transition element, the $3d^{10} {}^{1}S_0 - 3d^94s {}^{3}D_2$ E2 transition element and the hyperfine interaction matrix elements between ${}^{3}D_3$ and ${}^{3}D_2$. First order perturbation calculation were used to calculate the hyperfine induced E2 transition element and the *M_F*-dependent lifetimes.

Detailed results for Ni-like Xenon is presented. Xe consists of 9 different isotopes of which two have a nuclear spin (one with I = 1/2 and one with I = 3/2) resulting in 25 different lifetimes depending on isotope, *F*-value and M_F -value. [1] used a single exponential fit to experimentally determine the lifetime of the $3d^94s^{-3}D_3$ state in Ni-like Xe. It is shown that a single exponential could be fitted to a theoretical decay curve, where each lifetime was weighted according to a gas of natural mixing of isotopes, with good accuracy. Depending on which interval the single exponential was fitted to, different lifetimes was obtained.

[1] E. Träbert, P. Beiersdorfer, G.V. Brown, K. Boyce, R.L. Kelley, C.A. Kilbourne, F.S. Porter and A. Szymkowiak, Phys. Rev. A **73**, 022508 (2006)