

TCAMDATA 17-Oct-2006 Solar and LHD (Large Helical Device) **Plasma Diagnostics in EUV**

Solar and LHD (Large Helical **Device**) Plasma Diagnostics in EUV

Tetsuya Watanabe (NAO/NINS) Takako Kato, Izumi Murakami (NIFS/NINS) Norimasa Yamamoto (Nagoya U.)

Solar Coronal Spectra (Time Dep.)

Solar-B EUV Imaging Spectrometer (EIS)

Time-Depependent Collisional Radiative Model for Iron Line Atomic Data

NAOJ

Solar and LHD (Large Helical Device) Plasma Diagnostics in EUV

Solar-B (NAOJ) & Large Helical Device (NIFS) Iron M-shell Lines

Solar-B EIS (NAOJ, JAXA/MSSL/BU/RAL/NRL/UO)
Atomic Data Evaluation (NIFS)

- Time-dependent Collisional Radiative Model
 - Theoretical Calculation (Yamamoto et al.)
- Atomic Data Generation ______ EBIS/EBIT experiment (Sakaue et al.)

Solar and LHD (Large Helical Device) Plasma Diagnostics in EUV

Solar and LHD (Large Helical Device) Plasma Diagnostics in EUV

Launch: 23-Sep-2006 6:36am (JST)

M-V Booster

Uchinoura Space Centre/JAXA

Solar and LHD (Large Helical Device) Plasma Diagnostics in EUV

Uchinoura Space Centre

Hinode (sunrise; "he-know-day")

- Epoch:
- semi-major axis:
- eccentricity:
- inclination:
- altitude of perigee:
- altitude of apogee :
- period:

2006/10/3 18:00:00UTC 7059.706 km 0.000098.090 deg 678.452 km 684.682 km 98.387 min

Solar and LHD (Large Helical Device) Plasma Diagnostics in EUV

Opening of Telescope Doors (schedule)

- SOT side door; 14-Oct done! top door; 25-Oct
- XRT top door; 27-Oct
- EIS clamshell-front door; 27-Oct clamshell-rear door; 28-Oct

5th ICAMDATA 17-Oct-2006 Solar and LHD (Large Helical Device) **Plasma Diagnostics in EUV**

5th ICAMDATA 17-Oct-2006 Solar and LHD (Large Helical Device) **Plasma Diagnostics in EUV**

SOT

Focal Plane Package (FPP)

Filtergraph (FG)

Solar and LHD (Large Helical Device) Plasma Diagnostics in EUV

X-Ray Telescope (XRT)

Takes X-ray images of dynamically changing solar coronal structures

grazing-incidence telescope + 2k x
2k – pixel CCD to take X-ray images
of solar corona

- angular resolution 1" (x 3 better than Yohkoh
- Seeing plasma with temperatures
 - 1 10 MK.

EIS **SOLAR-B**

5th ICAMDATA 17-Oct-2006 Solar and LHD (Large Helical Device) **Plasma Diagnostics in EUV**

Solar and LHD (Large Helical Device) Plasma Diagnostics in EUV

EIS Optical Path

ICAMDATA 17-Oct-2006 Solar and LHD (Large Helical Device) **Plasma Diagnostics in EUV**

5th

FOV	Fine Mirror Scan 360 arcsec				
	Slit/Slot 1", 2 ", 40 ", 250" (4-positions)				
	Slit length 512 arcsec (1pixel=13.5µm=1arcsec)				
Min. Exp. Time	<1 sec (sit&stare/overlappograph), <1.3sec				
Wavelengths	170 - 210Å & 250 - 290Å				
Temperature Range	10 ⁵ – 2 × 10 ⁷ ° K (via HeII ~ FeXXIV)				
Density Diagnostics	10 ⁸ – 10 ¹² cm ⁻³ (via FeXII)				
Velocity Field	∆ v ~20 kms ⁻¹ /pix (250 – 290Å); 1000ph →				
	1kms ⁻¹ (line center) , 3kms ⁻¹ (line width)				

Solar and LHD (Large Helical Device) Plasma Diagnostics in EUV

EIS Field-of-View (FOV)

Solar and LHD (Large Helical Device) Plasma Diagnostics in EUV

EIS Effective Area

ICAMDATA 17-Oct-2006 5th Solar and LHD (Large Helical Device) **Plasma Diagnostics in EUV**

lon	Wave	Т	Incident	Detected			
Short Wavelength Band							
Fe XI	180.41	6.11	690.49	14.62			
Fe X	184.54	6.00	286.53	23.47			
Fe XII	186.85	6.11	142.80	22.20			
Fe XII	186.88	6.11	233.69	36.61			
Fe XI	188.23	6.11	359.34	74.79			
Fe XI	188.30	6.11	131.76	27.77			
Fe X	190.04	6.00	89.48	24.95			
S XI	191.27	6.20	31.00	10.04			
Fe XXIV	192.04	7.30	39.46	13.78			
Fe XII	192.39	6.11	233.45	83.94			
Ca XVII	192.82	6.70	154.30	57.24			
Fe XI	192.83	6.11	76.80	28.51			
Fe XII	193.52	6.11	631.78	244.11			
Ca XIV	193.87	6.51	41.57	16.31			
Fe XII	195.12	6.11	1052.18	424.08			
Fe XII	195.13	6.11	67.64	27.26			
Fe XIII	196.54	6.20	86.19	33.58			
Fe XII	196.65	6.11	105.45	40.83			
Fe XIII	197.43	6.20	45.80	16.67			
Fe XIII	200.02	6.20	155.95	36.00			
Fe XIII	201.13	6.20	192.59	32.15			
Fe XIII	202.04	6.20	591.85	72.96			
Fe XIII	203.80	6.20	208.79	15.09			

lon	Wave	Т	Incident	Detected			
Fe XIII	203.83	6.20	638.82	45.80			
Long Wavelength Band							
Fe XVI	251.07	6.40	188.12	10.84			
Fe XIII	251.96	6.20	387.52	23.48			
He II	256.32	4.70	328.81	24.69			
He II	256.32	4.70	164.40	12.34			
Si X	256.38	6.11	135.28	10.18			
S XIII	256.68	6.40	199.87	15.23			
Fe XIV	257.38	6.30	207.85	16.23			
Si X	258.37	6.11	382.83	30.83			
Si X	261.06	6.11	123.07	10.58			
Fe XVI	262.98	6.40	331.16	29.55			
SX	264.23	6.11	116.73	10.62			
Fe XIV	264.78	6.30	394.57	36.15			
Fe XIV	270.51	6.30	291.23	26.31			
Fe XIV	274.20	6.30	241.91	18.46			
Si VII	275.35	5.80	166.99	11.76			
Fe XV	284.16	6.30	4063.11	126.55			

Active Region

ICAMDATA 17-Oct-2006 5th Solar and LHD (Large Helical Device) **Plasma Diagnostics in EUV**

Active Region

Ionization Equilibrium; Relaxation Time Scales

Solar and LHD (Large Helical Device) Plasma Diagnostics in EUV

Iron M-shell Line Atomic Data Evaluation

Fe X, Fe XI, Fe XIII

- Survey existing data
- Method of Calculation
- Pick up Recommended data
- Analytical fitting (only) for Fe XIII

Solar and LHD (Large Helical Device) Plasma Diagnostics in EUV

FeXIII

Fawcett & Mason (1989)

SuperStructure, 48 levels, Distorted Wave

Gupta & Tayal (1998)

26 levels, Semirelativistic R-matrix (Breit-Pauli approximation), partial waves with J \leq 22.5, E<60Ryd

Tayal (2000)

26 levels, Breit-Pauli R-matrix, E<90Ryd, partial waves with $J \leq 22.5$, 0.005Ryd mesh

Aggarwal & Keenan (2005)

GRASP, 97 levels, Dirac Atomic R-matrix, E<120Ryd, partial waves with J≦39.5; 0.001-0.002Ryd mesh

ICAMDATA 17-Oct-2006 Solar and LHD (Large Helical Device) **Plasma Diagnostics in EUV**

Fe X

Electron-Ion Collisions

> Aggarwal, K. M., & Keenan, F. P., A&A, 439, 1215 (2005)

5th

fully relativistic approach based on GRASP code for the generation of wavefunctions, and the Dirac Atomic *R*-matrix Code (DARC) for the computations collision and effective collision strengths. Calculations are in the *jj* coupling scheme, and Breit and QED corrections have been included.

Advantages of this work:

□ significantly improved the accuracy of energy levels, radiative rates and collision strengths, by including extensive CI and performing the calculations in the *jj* coupling.

improving the accuracy of Ω values by extending the range of partial waves and by achieving convergence in values of Ω at all energies and the energy range considered

 \Box improving the Γ values by resolving resonances in a finer energy mesh and by including additional resonances

• extending the range of levels and including many of the desired levels among which the transitions have already been observed

Electron-lon Collision^{5th} ICAMDATA 17-Oct-2006 Solar and LHD (Large Helical Device) **Plasma Diagnostics in EUV**

The results presented in paper Aggarwal & Keenan have obvious advantages in comparison with all earlier results.

Fe X In comparison with the work Bhatia & Doschek, these calculations have significantly improved the accuracy of energy levels, radiative rates and collision strengths, by including extensive CI and performing the calculations in the *jj* coupling. In comparison to the work Tayal an overall improvement has been made by: (i) including additional CI in the generation of wavefunctions, and thus improving the accuracy of energy levels; (ii) extending the range of levels from 54 to 90, and hence including many of the desired levels among which the transitions have already been observed; (iii) improving the accuracy of Ω values, by extending the range of partial waves (from 20 to 39) and the energy range (from 90 Ryd to 210 Ryd); (iv) improving the Γ values by resolving resonances in a finer energy mesh and by including additional resonances; (v) performing the calculations in the *jj* coupling instead of the semirelativistic approach in the LSJ coupling scheme.

Similarly, this work is an improvement over the work of Pelan & Berrington mainly by extending the range of levels (transitions) from 31 (465) to 90 (4005), and by achieving convergence in values of Ω at all energies.

We recommend to use for Fe X data of Aggarwal & Keenan.

Proton excitation cross sections for transitions in Si-like Fe XIII: \Box quantum results [Faucher 1977], solid line - semi-classical results [1Landman 1975], dotted line – semi-classical results [Masnou-Seeuws & McCarroll 1972]; (1) – transition ${}^{3}P_{0}-{}^{3}P_{1}$, (2) – transition ${}^{3}P_{1}-{}^{3}P_{2}$, (3) – transition ${}^{3}P_{0}-{}^{3}P_{2}$.

Solar and LHD (Large Helical Device) Plasma Diagnostics in EUV

RESULTS Proton-Ion Collisions

General conclusion:

In high density plasma N_e > 10¹⁶ cm⁻³ proton collisions are Important for ions: Fe XV, XVII, XXII.

 $Np \sim Ne < A_i/C_i^e$

For Fe XII proton collisions are not important.

For all important transitions we have evaluated available numerical data and recommended data were fitted to analytical formula.

Solar and LHD (Large Helical Device) Plasma Diagnostics in EUV

Collisional-radiative model -Atomic Processes & Energy Levels

Atomic Processes (rate):

Excitation/de-excitation (C^eN_e) by e⁻-impact,

Excitation/de-excitation (C^pN_e) by p-impact,

Ionization (SN_e) /three-body recombination ($\beta^t N_e^2$),

Radiative transition (A^r), Radiative recombination ($\beta^r N_e$)

Energy Levels (*configuration*): $2 \le n \le 5$

Bare, H-like(*nl*), He-like(*1snl*), Li-like(*1s²nl*), Be-like(*2l'nl*), B-like(*2s²nl*, *2s2pnl*, *2p²nl*), C-like(*2s²2pnl*, *2s2p²nl*, *2p²nl*), N-like(*2s²2p²nl*, *2s2p³nl*, *2p⁴nl*), O-like(*2s²2p³nl*, *2s2p⁴nl*, *2p⁵nl*), F-like(*2s²2p⁴nl*, *2s2p⁵nl*, *2p⁶nl*), Ne-like (*2s²2p⁵nl*, *2s2p⁶nl*), Na-like(*2s²2p⁶nl*), Mg-like(*3l'nl*), Al-like(*3s²nl*, *3s3dnl*, *3p²nl*, *3p3dnl*), Si-like(*3s²3l'nl*), P-like(*3s²3p3l'nl*), S-like(*3p²3l'nl*), Cl-like(*3p³3l'nl*), Ar(*3p⁵nl*), K-like(*3p⁶nl*, *3p⁵3dnl*), Ca-like(*3p⁶3dnl*)

Solar and LHD (Large Helical Device) Plasma Diagnostics in EUV

Collisional-radiative model (Yamamoto et al.)

Time-dependent Rate Equation:

 $\frac{dN_{i}(t,T_{e},N_{e})}{dt}$ $= -N_{i}(t,T_{e},N_{e})\sum_{j}W_{ij}(T_{e}(t),N_{e}(t)) + \sum_{j}W_{ji}(T_{e}(t),N_{e}(t))N_{j}(t,T_{e},N_{e})$ Quasi-steady State Solution:

$$N_{i}(t, T_{e}, N_{e}) = \sum_{k} r_{i}^{(k)}(T_{e}, N_{e}) N_{e} N_{k}(t, T_{e}, N_{e})$$

Time-independent Rate Equation:

$$\frac{dr_{i}^{(k)}(T_{e}, N_{e})}{dt} = -r_{i}^{(k)}(T_{e}, N_{e})\sum_{j} W_{ij}(T_{e}, N_{e}) + \sum_{j} W_{ji}(T_{e}, N_{e})r_{j}^{(k)}(T_{e}, N_{e})$$

5th ICAMDATA 17-Oct-2006 Solar and LHD (Large Helical Device) **Plasma Diagnostics in EUV**

Ion Fraction N_k :

 N_k is calculated to use total ionization and recombination rate coefficients, S and β , by Arnaud & Raymond (1992).

Line Intensity $I(\lambda)$: $I(\lambda) = \sum N_i A_{ij}^r \Delta E_{ij} P_i(\lambda)$

5th ICAMDATA 17-Oct-2006Solar and LHD (Large Helical Device)SOLAR-BPlasma Diagnostics in EUV

equilibrium

ICAMDATA 17-Oct-2006 **5**th Solar and LHD (Large Helical Device) **Plasma Diagnostics in EUV**

Plasma Source : Hydrogen

with *Fe-pellet* injection

Fe-TESPEL:

Polystyrene-shell Fe pellet Pelet Radius: 780-820µm Mass of Fe in the shell: 43-66µg Mass of shell: 250-300µg Injection Velocity: 300-400m/s Injection Time: 1.0s

<u>Plasma Heating</u> :

NBI (neutral beam injection) ECH (electron cyclotron resonance heating) ICRF (ion cyclotron range-of-frequency)?

5th ICAMDATA 17-Oct-2006 Solar and LHD (Large Helical Device) **Plasma Diagnostics in EUV**

Spectra from Low temperature Plasma

Solar and LHD (Large Helical Device) Plasma Diagnostics in EUV

EBIT experiment for Fe M-shell transitions CO(ronal e)BIT* project

- $N_e: 10^{12} \text{ cm}^{-3}$
- $N_i: 10^{8-9} \text{ cm}^{-3}$
- E_e: mono-energetic 1-100 keV

Electron energy ⇔ ionization stage

Tetsuya Watanabe (NAOJ) et al.

*: kobito = dwarf

5th ICAMDATA 17-Oct-2006 Solar and LHD (Large Helical Device) **Plasma Diagnostics in EUV**

5th ICAMDATA 17-Oct-2006 Solar and LHD (Large Helical Device) **Plasma Diagnostics in EUV**

