Kinetic coefficients in dense media

<u>A.N.Starostin,</u> A.V. Eletskii

Russian Scientific Center "Troitsk Institute of innovation and fusion research", (TRINITI), Moscow Region

Russian Research Center "Kurchatov Institute", Moscow

EQUILIBRIUM ENERGY DISTRIBUTION FUNCTION

 In condition of "seldom" collisions
 This is followed by a sharp temperature dependence of the rate constants of barrier and adiabatic processes f(ε) ~ exp(-ε/T) – Maxwellian function
 k ~ exp[-ΔE/T] (Arrenius) for barrier processes
 k ~ exp[-(To/T)1/3] (Landau-Teller) – for adiabatic processes AS THE ELASTIC COLLISION FREQUENCY RISES THE QUANTUM UNCERTAINTY OF ENERGY INREASES

Δε ~ ħv_{el} = ħNk_{el}

N is the density of the medium
 k_{el} is the elastic scattering rate constant
 The quantum corrections are notable at the condition

◇ Δε ~ T
◇ or
◇ N ≥ T/ħk_{el},
d pressures and model

i.e. at elevated pressures and moderate temperature Momenta distribution function of particles with taking account the quantum correction

$$f(E,\mathbf{p}) = n(E) \frac{\gamma(E,\mathbf{p})}{\pi \left[\left(E - \varepsilon_{\mathbf{p}} - \Delta(E,\mathbf{p}) \right)^2 + \gamma^2(E,\mathbf{p}) \right]} \equiv n(E) \delta_{\gamma}(E - \varepsilon_{\mathbf{p}})$$

n(*E*) is the population numbers, *ε*_p = *p*²/2*m* is the kinetic energy, *γ* ~ *ħv* is the collision width, *v* is the collision frequency, *Δ* is the density shift of the energy

Momenta distribution function of particles with taking account the quantum correction • In particular, for electrons in equilibrium state

$$n(E) = \frac{1}{\frac{E-\mu}{e^{T}} + 1},$$

Momenta distribution function of particles with quantum correction

The momenta distribution function of particles is the result of integration of f(E,p) over the energies:

 $f(\mathbf{p}) = \int dE f(E, \mathbf{p})$

Momenta distribution function of particles in a rarefied gas

• In this case the collision width γ of the spectral function δ_{γ} (*E*- ε_{ρ}) is a negligible i. e. the function is close to the δ -function. This results in:

$$f(\mathbf{p}) = e^{\frac{\mu}{T}} e^{-\frac{\varepsilon_p}{T}}$$

 which is the maxwellian momenta distribution function of particles Momenta distribution function (MDF) of particles in the case of a gas of a specific density

• MDF in a high momenta region $\varepsilon_{p} >> \{T, \gamma, \Delta\}$ along with the resonant, maxwellian item contains also a powerlike correction

$$f(\mathbf{p}) = \frac{1}{\pi \varepsilon_p^2} \int_{-\infty}^{\infty} n(E) \gamma(E, \mathbf{p}) dE$$

Asimptotic representation for *f*(**p**) within the frame of Lorentz gas model

$$f(p) = e^{\frac{\mu}{T}} \left(e^{-\frac{\varepsilon_p}{T}} + \frac{\hbar N T \sigma_t(p)}{2\pi \varepsilon_p^2} \sqrt{\frac{\pi T}{2m}} \right)$$

Specifically for the electronic gas σ_t ~

 (ε_ρ)⁻² so that the momenta dependence
 of the quantum correction has the form ~
 p⁻⁸

High density plasma

In Rostock university (BRD, M.Bonitz, D.Semkat) have developed numerical codes for computing distribution function, using the Kadanoff-Baym equations

High density plasma

Our calculations give the same momenta distribution of electrons for the same conditions

High density plasma

The reaction rate constant for the Lorentz gas model expression with taking into account quantum effects in high density plasmas has the following form:

$$m_e k_{ij} \sim A \int dE d\vec{p} d\vec{p}' n(E) (1 - n(E \mp I)) |f_{ij}(\vec{p}, \vec{p}', E)|^2 \times dE d\vec{p} d\vec{p}' n(E) (1 - n(E \mp I)) |f_{ij}(\vec{p}, \vec{p}', E)|^2$$

$$\times \delta_{\gamma}(E - \varepsilon_p) \delta_{\gamma}(E \mp I - \varepsilon_{p'})$$

Here «-» or «+» correspond to the processes with the absorption or release of energy amount I; *f*_{ij} is the scattering amplitude for the process *i*-*j*.

VT relaxation of diatomic molecules

- The probability of a VT transition is expresse through the Massey parameter *Me*
- $P_{VT}(v) \sim \exp(-cMe) = \exp(-cb\omega/v) << 1.$ Here
- $Me \sim b\omega/v \sim (b\mu^{1/2})/(m^{1/2}T^{1/2}) >>1$, if $\mu/m \sim$
- ω is the molecular vibration frequency,
- *b* is the range of action of inter-molecular forces
- v is the collision velocity

The relative contribution of the quantum correction into the VT relaxation rate constant

The total VT relaxation rate constant

$$k_{VT} = k_0 \left[e^{-3\left(\frac{\theta'}{T}\right)^{1/3}} + C_t \right].$$

The quantum correction

$$C_{t} = \frac{1}{4} \left(\frac{T}{\theta}\right)^{1/3} \left(\frac{T}{\theta}\right)^{1/2} e^{\frac{\theta}{2T}} \frac{\Gamma(2+2k)}{\pi 2^{2+2k}} \sqrt{\frac{3}{4}} \frac{\hbar N \sigma_{p}^{k} v_{T}}{2\theta}$$

The relative contribution of the quantum correction into the VT relaxation rate constant

is the

$$\theta' = \frac{m}{2} \left(\frac{\pi\omega}{a}\right)^2 >> T$$

characteristic temperature; $\theta = \hbar \omega$.

♦ Here

 For nitrogen the contribution of the correction is

$$\frac{I_2}{I_1} \approx 2.9 \cdot 10^{-17} \cdot T^{4/3} \left(\frac{N}{N_L}\right) e^{-\frac{1690}{T}} e^{\frac{277.8}{T^{1/3}}}$$

Comparison with experiment for N₂

 \diamond 1-7 are the experimental data; ♦ 8 is calculation by the Landau-Teller model ♦ 9 is the temperature dependence of k_{VT} with taking account the quantum correction

Thermonuclear fusion reaction

$\diamond d + d \rightarrow t + p$

 In this case the reaction proceeds through the under-barrier tunneling and the velocity dependence of the cross section has the following form:

$$\sigma_1(\varepsilon_p) = \frac{S(\varepsilon_p)}{\varepsilon_p} \exp\{-2\pi\eta(\varepsilon_p)\}$$

Thermonuclear fusion reaction

♦ Here

$$\eta(\varepsilon_p) = \frac{Z_1 Z_2 e^2}{\hbar v}$$

is the Gamov factor;

S(ε_p) is the astrophysical factor
 The correction is calculated by the averaging the cross section over the MDF

Momenta distribution function of particles in dd experiment

$$f(p) = \frac{1}{\left(2\pi mT\right)^{3/2}} \left[e^{-\frac{\varepsilon_p}{T}} + \frac{\sqrt{\pi}N\hbar T}{\left(\varepsilon_p\right)^4} \sqrt{\frac{2T}{m_a}} \right],$$

 The quantum correction is represented by the second item

Energy dependence of the astrophysical factor of dd-reaction

The theoretical dependences have been obtained with taking account the quantum correction and the effect of screening of deuterium nuclei with free electrons of the metal target

Monte-Carlo simulations

The Monte Carlo simulation had been carried out for real particles fusion reactions rates calculation.

$$n_{a}n_{b}\langle\sigma\nu\rangle = C\int_{-\infty}^{\infty} dE_{a}\int \mathbf{dp}_{a}\int_{-\infty}^{\infty} dE_{b}\int \mathbf{dp}_{b}\int_{-\infty}^{\infty} d\omega\int \mathbf{dq} \ n(E_{a})\delta\gamma_{a}(E_{a}-\varepsilon_{a})\times (1-n(E_{a}+Q_{a}-\omega))\delta\gamma_{a}'(E_{a}+Q_{a}-\omega-\varepsilon_{p_{a}-q})\cdot n(E_{b}) \cdot \delta\gamma_{b}(E_{b}-\varepsilon_{b})(1-n(E_{b}+\omega+Q_{b}))\delta\gamma_{b}'(E_{b}+\omega+Q_{b}-\varepsilon_{p_{b}+q})\cdot |f|^{2}$$

$$\gamma_a \left(E_a, \varepsilon_a \right) = \frac{\hbar}{2} \sum_c N_c \sqrt{\frac{2E_a}{m_{ac}}} \left\langle \frac{4\pi \ e^4 Z_a^2 Z_c^2}{\left(\varepsilon_{ac} + E_a + E_{De}\right)^2 - 4E_a \varepsilon_{ac}} \right\rangle$$

 $\mathcal{E}_a = -$

 $E_{De} = \frac{\hbar^2}{2m_e R_D^2}$

C is the fitting constant

The relative contribution of the quantum correction into the rate constant of dd reaction Energy, keV $\langle K_{qu}/k_{tot}, \%$ $\diamond 15$ $\diamond < 1$ $\diamond 3$ $\diamond 5$ $\diamond 2$ ♦8,3 ♦10,7 >1,8+1,5 $\diamond 30$ +1,2♦95,4 $\rightarrow 1$.99,7

Simplifications of the expression for the reaction rate constant In the case of mono-energy beam:

$$n_{a}K' = C\int_{0}^{\infty} dE_{a}\int d\vec{p}_{a}\int n(E_{a})a(E_{a} - \varepsilon_{a}, \varepsilon_{a})\sqrt{\frac{2\varepsilon_{p}}{\mu}}\sigma(\varepsilon_{p})$$

In the case of ideal plasma:

$$n_{a}K_{2} = C\int_{0}^{\infty} dE_{a} \int d\vec{p}_{a} \int n(E_{a})\delta(E_{a} - \varepsilon_{a}) \sqrt{\frac{2\varepsilon_{p}}{\mu}} \sigma(\varepsilon_{p}) \sim \int_{0}^{\infty} d\varepsilon_{a} n(\varepsilon_{a})\varepsilon_{p} \sigma(\varepsilon_{p})$$

Quantum correction in the case of non-Maxwellian distribution function:

The momenta distribution function asymptotically contains the power-like tail:

$$f(\varepsilon) = C' \int_{0}^{\infty} dE_a n(E_a) a(E_a - \varepsilon_a, \varepsilon_a) \sim \exp\left\{-\frac{\varepsilon_a}{T}\right\} + \frac{C_a(T)}{\varepsilon_p^4}$$

Using this expression, it is possible to calculate the reaction rate for non-Maxwellian distribution function:

$$K_{3} = C_{3} \int_{0}^{\infty} d\varepsilon_{a} f(\varepsilon_{a}) \sqrt{\frac{2\varepsilon_{a}\varepsilon_{p}}{\mu}} \sigma(\varepsilon_{p})$$

Conclusions

The quantum power-like tails of the MDF accelerate the processes VT relaxation in molecular gases, Thermonuclear fusion, High pressure chemical reactions. A new approach to calculation of the reaction rate constants has been proposed