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EQUILIBERIUM ENERGY

DISTRIBUTIONIFUNCTION

, In condition of
“seldom” collisions

, This is followed by a
sharp temperature
dependence of the
rate constants of
barrier and adiabatic
processes

. f(g) ~ exp(-¢/T) -
Maxwellian function

, k ~ exp[-AE/T]
(Arrenius) for barrier
processes

, k ~ exp[-(To/T)1/3]
(Landau-Teller) - for
adiabatic processes



AS THE ELASTIC COLLISION
FREQUENCY RISESHIHE QUANNUIV

UNCERTAINTY OF ENERGY INREASES

/ A£ ~ hVel — hNke[
. N is the density of the medium
, ke is the elastic scattering rate constant

, The quantum corrections are notable at the
condition

L, Ae~T
, or
QN 2 T/hke[,

,i.e. at elevated pressures and moderate
temperature



Momenta distribution function of
particles with taking account the
guantum; correction

FEP) =nE)— TEP) gy (E-c)

7Z'|:(E—6‘p —A(E,p))zJF?/Z(E’p)}

¢ (E) s the population NUMIBENS)

¥ £ = P2/ 2 IS e KInEetic Energy,
9 o~ [AVAIs thercollisionrwidtiay

¢ V. IS the collision frequUeEREY,

9 /A IS} the density, shift eff thier ERErgy:.



Momenta distribution function of
particles with taking account the
guantum; correction

¢ In particular, for electrons in equilibritm
state




Momenta distribution function of
particles with quantum; correction

¢ [The momental distribution function ofif particles
IS the result off Integration off f(E,p) over the
energies:

/(p) = | dEf (E,p)




Momenta distribution function of
particles in a rarefied gas

¢ In| this case the collision width 7 of the
spectral function o0, (E= &) Is a negligible
I. . the fiunction IS close to the, o—
function. This results in:

¥ WhilChrNS thesmaxwellignimoemenita
distributieon fURCEHOR Bl particles



Momenta distribution function (MDF) of
particles in the case of a gas of a
specific density
¢ MDE in a high mementa region &, >> {71,

Vv, A} aleng with the; resenant,

maxwellian item contains alsoer a pewer-
ike correction

1
72-17

f(p)=—5 | n(E)y(E,p)dE
& —00



Asimptotic representation for 7(jp) within
the frame of Lorentz gas model

¥ Specliically ior the, Electronic das Gr =~
(&5)R2 Sortha thENmomERtel dEPEREENCE
O the guantumrcorrection Has the format~

p-8



High density plasma

In  Rostock university (BRD, M.Bonitz,
D.Semkat) have developed numerical
codes for computing distribution function,
usingl the Kadanoff-Baym equations

——= Fermi function, T=10000K
o——3a Fc:;rmi function, T=17000K

-k




High density plasma

Our calculations give the same momenta
distribution of electrons for the same conditions




High density plasma

The reaction rate constant for the LLorentz gas model
expression with taking into account quantum effects
iIn high density: plasmas hasi the folloewing form:

nk, ~ A[ dEdpdp' n(E)1-n(E 5 1)) f,(p. B E) x

x0 (E—¢,)0 (ExI—¢,)

HEFE <=>1 OF <> CORESPORNE to) the PrOCESSES With thie
aDSERPLIGN' OF IFElease off ERERgy, amoeunt I;
[ijlIs therscattering amplithide e the! PrOCESS /-



\/T relaxation of diatomic molecules

The probability of  a VT transition IS expresse
through the Massey parameter Me

Py ~ exp(-cMe) = exp (-cbw/v) << 1.
IHERe

Mer~bw/ v~ (Bui/2)/(mi/2ZT2>>1, 1 J/m ~
w) IS5 the moelecularr vibration requUeRCY,,

pHS the range ol action it inter-moelecliar
[OFCES

VAIS thie collisiont VeloeIity,



The relative contribution of the quantum
correction into the VT relaxation rate

constant
¢ The total VT relaxation rate constant




The relative contribution of the
guantum; correction into the VT
relaxation rate constant

2
0' = ﬂ(ﬂ—wj >>T

¢ Here 2\ a is the
characteristic temperature; 6 = Hw.

¢ [For nitrogen the contribution of the
COKFECHORNNIS

1690 277.8
%2 2291077 .74 L | T o1
NL

1,




Comparison with experiment for N5

¢ 1-7 are the
experimentall datas;

% S IS/ calculation by the
Landau-Teller moedel

¢ 9 s the temperature
dependence off Kyt
Withrtaking accolnt
the guantum
CORRECLIGN




Thermonuclear fusion reaction

od +d >t +p

¢ In this case the reaction proceeds
through the, under-barrier tunneling and
the velocity dependence of the, Cross
section has the fellowing ferm:




Thermonuclear fusion reaction

¢ Here

IS the Gamov: factor;

o S((€,) s the astrophysical iactor

9 e correctioniisicalculated oy the
aVeaging the crossi sectionievertne WibE



Momenta distribution function of
particles in dd experiment

¢ [[he guantums Correction IS represented: By,
Che second Item



Energy dependence of the
astrophysical factor of dd-reaction

¢ Ihe theoretical
dependences have
Peen obtained with
taking account the
guantuim correction
andl the efffect of
SCIreening of
detteritm nuCElerwith
[FEE EIECtFONS: Off the
metalFtarget




Monte-Carlo simulations

The Monte Carlo simulation had been carried out
for real particles fusion reactions rates
calculation.

nn,(ov)= CT dEajdpa T dEbjdpb T dwjdq n(E,)oy,(E, —¢,)x

(1—n(Ea +0, —a)))§7/; (Ea +0, —a)—gpa_q)-n(Eb) :
5y, (E, —gb)(l—n(Eb +a)+Qb)) 5y, (Eb +w+0, —gpb+q)~‘f‘2

v (E 5):EZN 2Ea dr ‘727’
e 24 N my, \(s,,+E,+E,) —4E,¢, c

C is the fitting constant




The relative contribution of the quantum
correction into the rate constant of dd

reaction
¢ Energy, keV & Koo/ Keot, Yo
15 o<1
®5 *3
> 2 ¢3,3
1,8 10,7
1,5 ¢ 30
1,2 9 95,4

o1 SIS/



Simplifications of the expression

for the reaction rate constant
In the case of mono-energy beam:

n K, CJ'dE [ dp, [n(E




Quantum correction in the case of
non-Maxwellian distribution function:

The momenta distribution function asymptotically contains the
power-like tail:

Using this expression, it is possible to calculate the reaction rate for non-
Maxwellian distribution function:




Conclusions

¢ The quantum power-like tails of
the MDF accelerate the processes

¢ \/1 relaxation in molecular gases,
¢ [hermonuclear fiusion,
¢ IHigh pressure chemical reactions.

» A NEW appreach te; calcllation: of
ChE rEaCtIoN Fate constants Nas
PDEEN PrOPOSEE




