

Max-Planck-Institut für Plasmaphysik

Tungsten Spectroscopy for Fusion Plasmas

Rudolf Neu¹

T. Pütterich¹, R. Dux¹, A. Pospieszczyk², G. Sergienko² ASDEX Upgrade Team, TEXTOR Team

¹MPI für Plasmaphysik, Garching, Germany ²FZ Jülich, Jülich, Germany

Tungsten Spectroscopy for Fusion Plasmas

- Rationales for W as a Plasma Facing Material
- W in ITER and Other Devices
- Spectroscopic Diagnostic of Fusion Plasmas
- W Spectroscopy in the Visible and UV (Influx Measurements)
- W Spectroscopy in the VUV and SXR (Density Measurements)
- Conclusions and Outlook

Rationales for W as plasma facing material

Low erosion rates:

- → low power loss by dilution / radiation originating from impurities
- \rightarrow long lifetime of PFCs
- \rightarrow low dust production
- \rightarrow low T co-deposition

Rationales for W as plasma facing material

Low erosion rates:

- → low power loss by dilution / radiation originating from impurities
- \rightarrow long lifetime of PFCs
- \rightarrow low dust production
- \rightarrow low T co-deposition

Low atomic number

 \rightarrow low radiation loss parameter

Losses through

dilution (low-Z) : $n_{DT} = n_e(1 - Zn_Z)$ radiation (high-Z) : $P_{rad} / V = L_Z n_Z n_e$

Rationales for W as plasma facing material

- → low power loss by dilution / radiation originating from impurities
- \rightarrow long lifetime of PFCs
- \rightarrow low dust production
- \rightarrow low T co-deposition

Low atomic number

 \rightarrow low radiation loss parameter

Losses through dilution (low-Z) : $n_{DT} = n_e(1 - Zn_Z)$ radiation (high-Z) : $P_{rad} / V = L_Z n_Z n_e$

Tungsten Spectroscopy for Fusion Plasmas

- W in ITER and Other Devices
- Spectroscopic Diagnostic of Fusion Plasmas
- W Spectroscopy in the Visible and UV (Influx Measurements)
- W Spectroscopy in the VUV and SXR (Density Measurements)
- Conclusions and Outlook

W in ITER and other devices Early devices

Most of the fusion devices in the temperature profile in PLT 70'ties started with high-Z PFCs during W accumulation 1 keV (limiters): ELECTRON TEMPERATURE (Alcator A,C) (FT) ORMAK PLT (DIVA) -50 50 RADIUS (cm) high-Z contamination / accumulations strongly deteriorated performance \Rightarrow all devices with moderate current densities use low-Z PFCs

W in ITER and other devices ITER Design Parameters

- dimensions: R=6.2 m, a=2 m
 - 2 x JET, 4 x AUG (linear)
- plasma heating 150 MW
 5 x JET, AUG
- discharge duration: 400s
 10 x JET, 40 x AUG
- energy content: 350 MJ
 50 x JET, 300 x AUG
- fluency / discharge: 4e26/m²
 100 x JET, 200 x AUG
- ⇒ plasma surface interaction / plasma facing materials are central issues

ICAMDATA, Paris/Meudon 19/10/06

W in ITER and other devices Plasma facing materials in ITER

Be: main chamber, port-limiter, baffles (~700m²) W: upper part target, dome (~100m²) **CFC**: lower part target (~50m²)

W in ITER and other devices Steps in ASDEX Upgrade towards a full W device

Steady increase of area of main chamber W PFCs since 1999

Rationales:

- risk minimisation
- physics investigations
- partitioning of installation time
- production capacity

W in ITER and other devices Steps in ASDEX Upgrade towards a full W device

'05/'06 campaign: $\Rightarrow 36 \text{ m}^2 (85\% \text{ of PFCs})$ '07 campaign W divertor \Rightarrow full W device

pp

Tungsten Spectroscopy for Fusion Plasmas

- W in ITER and Other Devices
- Spectroscopic Diagnostic of Fusion Plasmas
- W Spectroscopy in the Visible and UV (Influx Measurements)
- W Spectroscopy in the VUV and SXR (Density Measurements)
- Conclusions and Outlook

ICAMDATA, Paris/Meudon 19/10/06

Spectroscopic diagnostic of fusion plasmas Ionisation shells in the central plasma

Spectroscopic diagnostic of fusion plasmas Impurity concentrations from LOS measurements

Comparison of measured I_M and calculated I_C intensities

$$I_c = \frac{1}{4\pi} \int_{\ell} h \nu n_x n_e \langle \sigma v_e \rangle dl$$

n_x density of impurity in ionisation state x
 n_e electron density
 <συ> excitation rate coefficient

 $n_x = C_{imp} \cdot f_x \cdot n_e$

- f_x fractional abundance of the impurity ionisation state x
- C_{imp} impurity concentration

Tungsten Spectroscopy for Fusion Plasmas

- W in ITER and Other Devices
- Spectroscopic Diagnostic of Fusion Plasmas
- W Spectroscopy in the Visible and UV

(Influx Measurements)

- W Spectroscopy in the VUV and SXR (Density Measurements)
- Conclusions and Outlook

W-spectroscopy in the visible and UV Set-up for spectroscopy on a TEXTOR limiter lock

Spectrometers:overview 200 - 464 nmR : 1500Spatially resolvingmedium200 - 750 nmR : 5500Broad bandEchelle (220)375 - 750 nmR :20000observation of several distant W-lines necessary

ICAMDATA, Paris/Meudon 19/10/06

pp

W-spectroscopy in the visible and UV Search for suitable W lines

400.9 nm ⁷S – ⁷P

- well separated, very intense line
- S/XB is known

7 cm

- but: far blue
- \Rightarrow fiber transmission low

search for other W-lines with

- longer wavelengths:
- ⇒ may be affected during extreme heating
 - UV lines
- \Rightarrow direct LOS necessary
- ⇒ both extensions are useful

ICAMDATA, Paris/Meudon 19/10/06

3900

3950

4000

4050

3850

5000

0

3800

4150

4100

W-spectroscopy in the visible and UV Useful wavelength ranges

From new NIST tables (version 3.0)

Yu. Ralchenko et al. "New Generation of the NIST Atomic Spectroscopic Databases," in *Atomic and Molecular Data and Their Applications*, AIP Conference Proc., Vol. 771 Ed. by E.T. Kato et al. (AIP Press, Melville, NY,2005), p. 276-285.

A.E.Kramida, T.Shirai, J.Chem.Phys. (in press): W I: 7049 lines, W II: 2838 linesterm designations not complete

wavelengths ranges for intense W-lines:

WI (8 eV)	UV- visible: up to 5600 Å	W
W II (15 eV)	UV - visible: up to 4200 Å	ve
WIII (25 eV)	UV: up to 2700 Å	⇒
W IV (39 eV)	UV: up to 2700 Å	
WV (53 eV)	UV: up to 2300 Å	⇒
W VI	VUV: up to 1500 Å	

- W I and W II lines often very close to each other
- ⇒ spectrometers with good
 - resolutions are needed or
- ⇒ regions with sufficient separation

W-spectroscopy in the visible and UV Calculation of S/XB (400.9nm)

ionisation rate

ATOM code calculations (lowest configurations)

• excitation rate:

- semi-empirical v. Regemorter
 formula (complicated coupling
 scheme + configuration mixing)
- corona approximation: only excitation from 'ground' state

for $T_W \ge 0.2 \text{ eV}$:

- reasonable agreement with experiment
- small T_w dependence

W-spectroscopy in the visible and UV Alternative WI lines

Measurement of W spectra in TEXTOR (240 – 780nm)

- UV: low background from thermal radiation
 - suitable WI lines for influx measurements:

255.135nm, 268.142nm,

498.259nm ,505.328nm 400.8753nm (probably blended by WII (400.8751nm))

A. Pospieszczyk, G. Sergienko et al.

Tungsten Spectroscopy for Fusion Plasmas

- W in ITER and Other Devices
- Spectroscopic Diagnostic of Fusion Plasmas
- W Spectroscopy in the Visible and UV (Influx Measurements)
- W Spectroscopy in the VUV and SXR (Density Measurements)
- Conclusions and Outlook

W Spectroscopy in the VUV and SXR Investigated transitions

Accessible ionisations states in ASDEX Upgrade

- $\Delta n=0$ transition observable in the VUV
- $\Delta n=1$ transition observable
- in the SXR
 quasi continuum emission from states around W³⁰⁺
 strong single line transitions observed for ionisation observed for ionisation states around Ni-like W $(W^{46+}, 3d^{10})$

W Spectroscopy in the VUV and SXR Detailed investigations in the VUV

- Around 5 nm: Features emitted at $T_e \approx 0.8 1.5$ keV and at 1.8 4.5 keV
- Detailed EBIT measurements (Berlin, LLNL) available
- Disagreement in many details
- Rough structure of predictions is found in the spectrum

W Spectroscopy in the VUV and SXR Reduction of ambient ionisation states by accumulation

- central concentration can be increased by up 50 times
- radiation originates from very #19436, 7.0s 3.5 small volume / radial range \Rightarrow dominated by very few 1.0 10⁵ W m² ionisation states 0.5 도 accumulation volume 2.5 @6.53s Ν 0.0 0.0 3.0 spectrometer LOS -⁻⁻ bolometer LOS T_e (keV) -0.5 [keV] -1 ⊢[⊕] origin of -1.0 measured electron temperature nearby center emissions 1.5 R [m] 0.0 0.0<u></u> 2.5 6.2 7.0 2.0 6.6 1.0 ho_{pol} (norm. Plasmaradius) 1.0 Time [s]

W Spectroscopy in the VUV and SXR Disentangling W quasi-continuum

Comparison with **EBIT** investigations

central accumulation facilitates resolving spectral features

- → locally higher W-density
- → emission mostly from a few ionisation states
- \Rightarrow situation resembling to EBIT

Th. Pütterich et al., J. Phys. B 38 (2005) 3071

 \Rightarrow similar single line spectra

W Spectroscopy in the VUV and SXR Line intensities dominated by abundance of ionisation state

W Spectroscopy in the VUV and SXR Revision of ionization equilibrium

pp

W Spectroscopy in the VUV and SXR Revision of ionization equilibrium

W Spectroscopy in the VUV and SXR Detailed investigations in SXR region

W Spectroscopy in the VUV and SXR Investigation of Iso-electronic sequences (SXR)

Investigation of Hf, Ta, Re, Au, Pb, Bi emission and SXR

- spectra show similar features as W
- ADAS calculations reproduce overall features, but strongly underestimate E2 transitions in Ni-like ions (strong M3 contribution! Ralshenko et al.)
- HULLAC calculations just started

W Spectroscopy in the VUV and SXR Investigation of Iso-electronic sequences (VUV)

Investigation of Hf, Ta, Re, Au, Pb, Bi emission in VUV and SXR

- spectra show similar features as W
- ADAS calculations
 reproduce overall features,
 but width of quasicontinua is
 always too small

Tungsten Spectroscopy for Fusion Plasmas

- W in ITER and Other Devices
- Spectroscopic Diagnostic of Fusion Plasmas
- W Spectroscopy in the Visible and UV (Influx Measurements)
- W Spectroscopy in the VUV and SXR (Density Measurements)
- Conclusions and Outlook

Conclusions and outlook Spectroscopic measurements as standard diagnostic tool

Conclusions and outlook Spectroscopic measurements as standard diagnostic tool

spectroscopy:

- sputtering yields much larger than expected from pure H/D sputtering
- no difference visible for H,D
- light impurities dominate yield
- C-deposition and re-erosion (Schmid PSI 2002) have to be taken into account

probe erosion:

- net erosion factor 10 lower than gross erosion
- ⇒ prompt redeposition has to be taken into account

effective W-sputtering yield in the ASDEX Upgrade W divertor

Conclusions and outlook Extrapolation to JET and ITER

Conclusions and outlook

- W is a serious candidate for the plasma facing material in a fusion reactor
- JET and ITER will use W in the divertor region
- ASDEX Upgrade and TEXTOR have set-up a basis for spectroscopic W diagnostic in fusion plasma
- EBIT measurements are an excellent tool facilitating the interpretation of complex W spectra
- Broader dataset for W influx measurements highly desirable (WI, WII lines, WX-WXX for plasma edge)
- Revision of ionisation/recombination rates necessary
- Extrapolation to higher plasma temperature/ionisation states
- Close collaboration to theoretical data production