

Thermodynamic Data for Modeling of LTE Plasmas

Torsten Markus, Lorenz Singheiser

Research Center Juelich, IWV-2, D-52425 Juelich T.Markus@fz-juelich.de

ICAMDATA CONGRESS 2006 15 – 19 October 2006 Paris

Outline

- Motivation
- Computer based model calculations on the plasma (FIDAP)
- Determination of thermodynamic key data
 - Vaporization studies with High Temperature Mass Spectrometry
 - Building up of thermodynamic database
- Summary

Schematic of a High Pressure Discharge Lamp

High Intensity Discharge Lamps

High Efficiency and excellent Colour Rendering

orschungszentrum Jülich

T. Markus; ICAMDATA CONGRESS 2006, 15 – 19 October 2006, Paris

Spectrum of a Hg-containing CDM Lamp

Analysis and Modeling of LTE Plasma for High Pressure Discharge Lamps

a) Physical Analysis and Modeling of

- plasma
 - → energy balance, spectra, temperature, particle densities, electrical field strengths
- wall and electrodes
 - → heat flux to components (thermal load), temperature distributions

Stationary Energy Balance of High Pressure Discharge Lamps

Power density:

Electrical field:

Momentum:

$$\vec{\sigma}\vec{E}^{2} = (U_{rad}) - \vec{\nabla}(\kappa\vec{\nabla}T) + \rho c_{p}\vec{v}\cdot\vec{\nabla}T$$
$$\vec{\nabla}\cdot\vec{j} = 0 \ , \ \vec{j} = \sigma\vec{E}$$

$$\rho(\vec{v} \cdot \vec{\nabla})\vec{v} = \rho \vec{g} - \vec{\nabla} p_{\text{total}} + \vec{\nabla} \cdot \underline{\underline{\tau}}$$
$$\tau_{ij} = \eta \left(\frac{\partial v_j}{\partial x_i} + \frac{\partial v_i}{\partial x_j} - \frac{2}{3} \delta_{ij}(\vec{\nabla} \cdot \vec{v}) \right)$$

Continuity:

Equation of state:

$$\vec{\nabla} \cdot (\rho \vec{v}) = 0$$

$$p_{total} = \frac{\rho}{M_{carr}} RT$$

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

T. Markus; ICAMDATA CONGRESS 2006, 15 – 19 October 2006, Paris

Boundary Conditions

zero flow velocity at inner wall:

electrical input power:

$$\left| \vec{v} \right|_{r=R} = 0$$
$$P = \int_{V} \sigma E^{2} dV$$

- I

Wall and Electrodes

$$\vec{\nabla} \cdot (\lambda_{K,E} \vec{\nabla} T_{K,E}) = 0$$

 $q_{out} = \varepsilon(T_w)\sigma_{SB}(T_w^4 - T_{ref}^4) + h(T_w - T_{ref})$

- T_{ref}: ambient temperature
- h : heat transfer coefficient (air, Ar ...)

Lamp Grid used for Finite Element Code FIDAP

Velocity Vector Plot

R=5 mm, P=200 W

p_{Hg}=10 bar

p_{Hg}=100 bar

Plasma Temperature and Density Profiles

plasma temperature

e⁻ density

Hg density

Thermal Modeling of Wall and Electrode Temperatures

with radiation transport

Plasma Modeling Results

Input Data

- lamp and electrode geometry
- wall and electrode materials
- lamp filling
- electrical input power
- electrical conductivities (T)
- thermal conductivities (T)
- viscosities (T)
- specific heats (T)
- emissivities (T)
- particle densities (T)
- radiation emission (T)
 - atomic energy levels
 - transition probabilities
 - broadening constants

energy balance

Output Data

plasma temperature (r)
particle densities (r)
radiation emission (r)

- spectrum
- electrical field
- wall and electrode temperature distribution

Determination of partial pressures and key thermodynamic data

b) Thermochemical Analysis and Modeling of

- gaseous and condensed phases
 determination of species and densities
- chemical reactions and corrosion products
 Jamp life, light technical and electrical stability
- chemical transport
 - \rightarrow e.g. tungsten transport to wall (blackening)

Principle of Knudsen Effusion Mass Spectrometry (KEMS)

in der Helmholtz-Gemeinschaft

For chemical- and materials research elucidation of the vaporisation of materials is important

All materials vaporise if the temperature is sufficiently high

Thermodynamic data can be obtained from the partial pressures of the evaporating species (also for the condensed phase)

Knowledge of thermodynamic data is important to understand the chemical and thermodynamic behaviour like for example the interplay of substances during chemical reactions

Determination of Thermodynamic Data with Knudsen Effusion Mass Spectrometry

The *High Temperature Mass Spectrometry* is the most imortant method for the analysis of vapors over condensed phases

The *Thermodynamic Data* result from the measured temperature dependence of the *Partial Pressures* of the identified *Gaseous Species*

A special variant of this technique which is frequently used in inorganic gas phase chemistry, is the

Knudsen Effusion Masss Spectrometry (KEMS)

Schematic Representation of a Knudsen cell magnetic field mass spectrometer system

50 Hahre Hukunfe

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

. Markus; ICAMDATA CONGRESS 2006, 15 – 19 October 2006, Paris

Mass Spectrometer Knudsen Cell System (CH 5)

Determination of Thermodynamic Data Example: ΔH ; ΔS of Dyl₃

1st step:

identification of species present in the mass spectrum

and

Assignment of fragments to their neutral precursor => fragmentation coefficients

Fragmentation

(fragmentation coefficient)

T. Markus; ICAMDATA CONGRESS 2006, 15 – 19 October 2006, Paris

The temperature dependence of the ion intensities of the same neutral molecule generally show the same behaviour.

The appearance potential of the molecular ions formed by simple ionisation are generally smaller than those of fragments which come from the same neutral precursor. The appearance potential increase with increasing degree of fragmentation.

Fragmentation of a molecule is often indicated by the shape of the ionisation efficiency curve of the simple ionised ion

In comparison to molecular ions formed by simple ionisation the fragment ions have an additional kinetic energy contribution

Determination of Thermodynamic Data Example: ΔH^{F} of Dyl_{3}

2nd step:

Measurement of the temperature dependence of ion intensities

and

Determination of partial pressures

Temperature Dependence of Ion Intensities for the Equilibrium Vaporization of Dyl₃(s)

Experimental Determination of Partial Pressures p_i of Neutral Species i

$$p_i = k \frac{1}{\sigma_i} T \sum_{j} \frac{100}{\gamma_{i,j} A_{i,j}} I_{i,j}^+ = k \frac{1}{\sigma_i} \frac{I_i^+ T}{\gamma_i A_i}$$

T temperature

- I⁺_{i,j} intensities of to the neutral species i related ions j
- A_{i,j} isotopic abundance
- $\gamma_{i,j}$ multiplier gains
- σ_i ionisation cross section of the neutral species i
- k pressure calibration constant

Different Calibration Methods

1 vaporisation of a substance with a known vapor pressure

$$k = \gamma_i \sigma_i \frac{A_i}{100} \frac{p_i}{l_i^+ T}$$

2 pressure dependent reaction taking place $X_2(g) \leftrightarrow 2X(g)$

$$k = \frac{\sigma_X^2}{\sigma_{X_2}} \frac{I_{X_2}}{I_X^2} \frac{1}{T} k_p$$

3 calibration by using the mass loss

$$k = \frac{\sigma(i)}{I(i)T} \frac{1}{q \cdot c} \sqrt{\frac{2\pi RT}{M_i}} \frac{dm_i}{dt}$$

Temperature Dependence of the Partial Pressures for the Equilibrium Vaporization of Dyl₃(s)

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft ahre

Determination of Thermodynamic Data Example: ΔH^{F} of Dyl_{3}

3rd step:

Determination of Thermodynamic Data

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

T. Markus; ICAMDATA CONGRESS 2006, 15 – 19 October 2006, Paris

Equilibrium Constant

$$DyI_3(s) \Leftrightarrow DyI_3(g)$$

$$\mathsf{K}_{\mathsf{p}}^{0} = \prod_{j} \left(\frac{\mathsf{p}_{j}}{\mathsf{p}^{0}} \right)^{\mathsf{v}_{i}} = \frac{\mathsf{p}_{\mathsf{Dyl}_{3}(\mathsf{g})} \cdot \mathsf{p}^{0}}{\mathsf{p}^{0} \cdot \mathsf{p}_{\mathsf{Dyl}_{3}(\mathsf{s})}} = \frac{\mathsf{p}_{\mathsf{Dyl}_{3}(\mathsf{g})}}{\mathsf{p}^{0}}$$

with $p_{\text{Dyl}_3(s)} = p^0$

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

T. Markus; ICAMDATA CONGRESS 2006, 15 – 19 October 2006, Paris

Determination of thermodynamic properties 2nd law method

 $\Delta_{\rm r} G_{\rm T}^0 = -RT \ln K_{\rm p}^0 \qquad \Delta_{\rm r} G_{\rm T}^0 = \Delta_{\rm r} H_{\rm T}^0 - T\Delta_{\rm r} S_{\rm T}^0$ $lnK_{p}^{0} = -\frac{\Delta_{r}H_{T}^{0}}{R} \cdot \frac{1}{T} + \frac{T\Delta_{r}S_{T}^{0}}{R}$ $= A \cdot \frac{1}{T} + B$

Determination of *AH* and *AS* from Equilibrium Constant

Determination of thermodynamic properties 3rd law method

Free Energy Function (FEF) from literature ex. JANAF tables

T. Markus; ICAMDATA CONGRESS 2006, 15 – 19 October 2006, Paris

Determination of Thermodynamic Properties

Г. Markus; ICAMDATA CONGRESS 2006, 15 – 19 October 2006, Paris

Thermodynamic Data for the equilibrium vaporization of $Dyl_3(s)$

	T _m	ΔH^0_{Tm}	∆ H ⁰ ₂₉₈	∆ H ⁰ ₂₉₈	∆ S⁰ ₂₉₈	k _p (T _m)		
	К	kJ mol ⁻¹	kJ mol ⁻¹ 2 nd law	kJ mol ⁻¹ 3 rd law	kJ (kmol K) ⁻¹			
I	920	260,5±2,7	279,4±2,8	278,0±0,9	201,9±3	3,05 · 10 ⁻⁶		
11	920	325,6±4,4	352,9±4,3	356,5±1,0	250,7±5,24	1,15-10 ⁻⁷		
ш	920	-195,4±3,3	-205,4±3,3	-199,49±0,8	-153,0±3,0	1,24 - 10 ⁺⁴		
1	Dy	$I_3(s) \rightarrow DyI_3(g)$						
11	$2Dyl_3(s) \rightarrow Dy_2l_6(g)$							
<i>III</i>	2D	$yI_3(s) \rightarrow Dy_2I_6(s)$	(g)					

T. Markus; ICAMDATA CONGRESS 2006, 15 – 19 October 2006, Paris

Example 2: Determination of Thermodynamic Data for Corrosion

Fragmentation Pattern for the mixture Nal/ $TmI_3 + AI_2O_3$

Partial pressure over an equimolar mixture of Nal /Tml₃ /Al₂O₃

so lahre tilkunt

in der Helmholtz-Gemeinschaft

Gaseous Equilibria over Al₂O₃/Nal/Tml₃ Mixture

Thermochemical Data of selected reactions in the NaX /TmX₃ /Al₂O₃ (X=Br, I) systems

	Τ _m	∆Hº _{Tm} kJ kmol⁻¹	Δ H ⁰ ₂₉₈	∆H ⁰ ₂₉₈ kJ kmol ⁻¹ 3 rd law		∆ S ⁰ ₂₉₈	k _p (T _m)	
	К		kJ kmol ⁻¹ 2 nd law			kJ (kmol K) ⁻¹		
I	806	-195,5±5,1	-202,1±5,1	-160,6±4,5		-183,2±5,7	5,98·10 ⁺³	
11	787	-185,2±5,5	-191,5±5,5	-222,6±1,3		-93,5±8,3	5,42·10 ⁺⁰⁷	
II	789	-326,1±9,7	-338,8±9,7	-372,6±1,8		-236,3±13,3	3,67 ·10 ⁺¹⁰	
IV	868	-226,7±15,0	-234,1±1,0	-183,6±1,6		-191,4±4,8	2,31·10 ⁺⁰⁴	
V	864	-228,1±6,8	-235,4±6,8	-242,9±0,3		-126,1±2,1	3,93·10 ⁺⁰⁷	
VI	866	-393,7±5,8	-408,5±5,8	-409,5±0,09		-281,6±5,0	3,04-10 ⁺¹⁰	
1	$Nal(g) + All_3(g) \rightarrow NaAll_4(g)$			IV	$NaBr(g) + AlBr_3(g) \rightarrow NaAlBr_4(g)$			
11	$Nal(g) + Tml_3(g) \rightarrow NaTml_4(g)$			V	$NaBr(g) + TmBr_3(g) \rightarrow NaTmBr_4(g)$			
IV	$2Nal(g) + Tml_3(g) \rightarrow Na_2Tml_5(g)$			VI	$2NaBr(g) + TmBr_3(g) \rightarrow Na_2TmBr_5(g)$			

Sytematic Investigations on binary and higher Order Metal Halide systems for thermodynamic database development

Measurements on the sytem Nal - Cel₃

Reactands in Knudsen Cell

 $Nal(I) + Cel_3(I)$

T-Range

728 K – 923 K

Identified Ions in Mass Spectrum

Na⁺, Nal⁺, Na₂l⁺, (Na₂l₂⁺) Ce⁺, Cel⁺, Cel₂⁺, Cel₃⁺ (NaCel⁺), NaCel₂⁺, NaCel₃⁺, NaCel₄⁺ Na₂Cel₄⁺

Partial pressures above a mixture of molten Nal-Cel₃ (50/50)

Differential Thermal Analysis (DTA)

Simultaneous DTA with Thermogravimetry (TG) STA 429, Netzsch

Measuring of Phase Transition Temperatures

Determination of the Quantity of Heat

Studies in different Atmospheres

Thermal Analysis from RT to 2800 K

Phase Diagram of Nal – Cel₃ determined by DTA

Thermodynamic Properties of A and B in Mixtures {xA + (1-x)B}

Activities:

According to definition: $a(i) = \frac{p(i)}{p^{\circ}(i)} = \frac{I(i^{+})}{I^{\circ}(i^{+})}$ (i = A, B)

Ion Intensity Ratio integration Method (GD-IIR):

$$\ln f(A) = -\int_{x=1}^{x} (1-x) \, d\ln \left(\frac{x \ I(B^+)}{(1-x) \ I(A^+)} \right) \qquad a(A) = x \ f(A)$$

Enthalpies and Gibbs Energies:

 $\Delta_{mix} H(A) = R \frac{d \ln a(A)}{d(1/T)} \qquad G_m^E = RT[x_{MX_n} \ln \gamma_{MX_n} + (1 - x_{MX_n}) \ln \gamma_{M'X_m}]$

Temperature and Composition dependency of activity for the Nal – Cel₃ system

activities at 750 °C

Enthalpy of mixing for the Nal-Cel₃ System

Thermodynamic Modeling Procedure

$$G = \sum_{i} \mu_{i} v_{i} = \sum_{i} \left(\mu_{i}^{0}(T) + RT \ln \frac{v_{i}}{v_{0}} \right) v_{i} = \min.$$
solve this problem and find $v_{1}...v_{N}$
input data needed:
$$\mu_{i}^{0}(T) = \underbrace{G_{i}^{m,0}(T) - H_{i}^{m,0}(T_{ref})}_{\text{Gibbs free energy related to}} + \underbrace{\Delta H_{f}^{m,0}(T_{ref})}_{\text{formation enthalpy}}$$
Gibbs free energy related to
enthalpie @ reference temperature
$$T_{ref} = 298K$$
This thermodynamic input data is taken from
• KEMS experiments

- calculations using c_p(T) functions
 literature tables

in der Helmholtz-Gemeinschaft

Introduction to the Data Optimization procedure

The *aim* is to generate a consistent set of Gibbs energy parameters from a given set of experimental data using known Gibbs energy data from well established phases of a particular chemical system.

Typical experimental data include:

phase diagram data: transitions temperatures and pressures as well as amount and composition of the phases at equilibrium

calorimetric data: enthalpies of formation or phase transformation, enthalpies of mixing, heat contents and heat capacity measurements

partial Gibbs energy data: activities from vapor pressure or EMF measurements

volumetric data: dilatometry, density measurements.

The assessor has to use his best judgement on which of the known parameters should remain fixed, which set of parameters need refinement in the optimization and which new parameters have to be introduced, especially when assessing data for non-ideal solutions.

Overview of the data to be optimized in the Nal-Cel₃ system

Various experimental data on the binary Nal-Cel₃ system have been measured:

- phase diagram data (liquidus points, eutectic points)
- liquid-liquid enthalpy of mixing
- activity of Nal(liq) at different temperatures

OptiSage will be used to optimize the parameters for the liquid Gibbs energy model (XS terms). All other data (G° of the pure stoichiometric solids, as well as the pure liquid components) will be taken from the FACT database (i.e. remain fixed).

A polynomial model for the Gibbs energy of the liquid will be used:

 $G = (X_1 G_1^\circ + X_2 G_2^\circ) + RT(X_1 \ln X_1 + X_2 \ln X_2) + G^{E}$

where $G^{E} = \Delta H - TS^{E}$ Using the binary excess terms: $\Delta H = X_{1}X_{2} (A_{1}) + X_{1}^{2}X_{2} (B_{1})$ $S^{E} = X_{1}X_{2} (A_{3}) + X_{1}^{2}X_{2} (B_{3})$ Hence: $G^{E} = X_{1}X_{2} (A_{1} - A_{3}T) + X_{1}^{2}X_{2} (B_{1} - B_{3}T)$ Where A_{1} , A_{3} , B_{1} and B_{3} are the 4 parameters to be optimized.

Phase Diagram of the System Nal–Cel₃ (calculated)

Nal - Cela

C3Dokumenie und Einsleitungen/II//EUSER/Desklop/Ma_Ce_Hnew/Ma/Cet3-D

. Markus: ICAMDATA CONGRESS 2006, 15 – 19 October 2006, Paris

Integral Free Excess Enthalpy

Computed gas phase composition over an equimolar Nal/ Dyl₃ mixture in a PCA Lamp

p_i [bar]

unf

Computed gas phase composition over an equimolar Nal/ Tml₃ mixture in a PCA Lamp using FactSageTM

Forschungszentrum Jülich in der Helmholtz-Gemeinschaft

T. Markus; ICAMDATA CONGRESS 2006, 15 – 19 October 2006, Paris

Berechnung der Gasphase über einer Mischung aus Tll und Dyl₃

Filled amounts/MOL: 1.00E-03 DY1 J3 1.00E-03 TL1 J1

3. Summary / Conclusions

- Physical modeling of plasma
 → energy balance, temperature and density profiles, spectra
- Identification of (gaseous) species in discharge lamps and analysis of corrosion processes
 → KEMS measurements
- Determination of basic thermodynamic data
 → enthalpies and entropies of formation
- Thermochemical modeling by minimizing Gibbs free energy
 → simulation of partial pressures for complex systems

Predictive Lamp Model !

Acknowledgements

Mischa Ohnesorge Marc Möllenhoff Klaus Hilpert Lorenz Singheiser

Mathias Born Ulrich Niemann Theo Kappen Willem vanErk

Part of the work was funded by the German Minestry of Science and Education BMBF (FKZ 13N8260)

