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Molecular anions

Molecular anions play an important role in many area
of physics. For example they mediate a series of
reactions:

1. Vibrational excitation by electron impact
e+ M(v) — (M)* —e + M(v;)
2. Dissociative electron attachment
e+ AB - (AB)* - A+ B-
3. Associative detachment
A+B — (AB)* -AB(J,v)+e



Why these processes are
important?

* Many applications from basic science to
technology

» Production of negative ions DA
e+H 2—>H+H-

- Early s‘ragﬁs of the Universe AD
e+H,«—H+

* Planetary atmospheres
* Plasma physics

- Chemical lasers

+ Molecular switches, etc.
* Biology - radiation damage



Hydrogen molecular anion

Molecules do not always form stable
anions, but usually many short-lived states exist.

Theory predicts the life time of the lowest
state of molecular hydrogen anion in the %
state to be of the order of 1014 s. This
life time is extremely short and is of the
order of vibrational period of the molecule.
The shortness of the lifetime is confirmed
by many experiments.
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Molecular hydrogen anion puzzle

The existence of short-lived states of molecular
hydrogen anion is firmly established both
theoretically and experimentally. However, states
with the lifetime of microseconds (longer by 9
orders) seemed to be observed in some
experiments but strongly ruled out by other
experimental work.

Do these states really exist and if yes
what is their nature and what is their lifetime?
Why they were seen in some experiments
and not in others?



Experimental search for H,

1. Khvostenko and Dukelskii, (1958)
(recharging method). Antimonium needed

2. Hurley et al. Nucl.Inst.Meth. 118(1974)307
(discharge ion source)
H,- observed 5.5 times more abundant than H-

3. Aberth et al. PRL34(1975)1600
(duoplasmon source)
D, observed with the lifetime >10- s,
but ho H," |



Experimental search for H,-

4. Barnett, Oak Ridge Natl. Lab. Report No.
ORNL/TM-8693, (1983) (unpublished) simultaneous
two-electron capture collisions of H* in H,

and Xe gasses. His careful studies gave
completely negative results!

5. Bae et al. PRA29(1984)2888
(two step electron capture in Cs)

No H,-, no D, with the life time > 10-10 sl

6. Wang et al. Chem. Phys. Lett. 377, 512 (2003)
dielectric-barrier discharge plasma. No explicit
identification of H-,!



Experimental search for H,-

7. The H," ion was probably observed without
any effort to form the ion by people studying
interplanetary dust and the H/D ratios for
meteors, see e.g.: E. Zinner, K. D. McKeegan,
and R. M. Walker, Nature 305, 119-121
(1983).



Search for H-, by AMS

VERA, the Vienna Environmental
Research Accelerator.
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Accelerator mass spectrometry
AMS

An ultrasensitive technique to detect
individual ions.

Used primarily to count carbon-14 in
arecheological and geologic samples for
dating purposes.

AMS can seek out one carbon-14 isotope
from among a quadrillion other carbon
atoms.
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How AMS works for hydrogen
anion

Sputtering: mostly singly charged particles with energy
about 70 keV.

Electrostatic analyzer E/Q
Magnetic analyzer M/Q

M/Q=2 H, or D

Acceleration by tandem accelerator
1.5 Mev, ions gain energy of about

Electrostatic Analyzer

Tandem Accelerator

1.57 MeV. @::::::::::::::::::: |
Stripper: O, gas. Ions lose electrons Ges Sipper Anayzng Megne
molecules break up

D-— D E=1.57 MeV

Electrostatic Analyzer
HZ" — H+ - H+, E: 0_785 Mev Energy Detector J

Second acceleration by 1.5 MeV

D* E=3.07 MeV

H* E=2.285 MeV, 2H* E=4.570 MeV

. Again M/Q and E/Q and energy E measured (TOF).



1. Conclusion-experiment

These experiments demonstrate conclusively
that both H,  and D-, are formed in the
sputtering process; from the respective flight
times from the ion source to the tandem
terminal stripper, we infer lifetimes of at least
3 ps and 4 ps, respectively.



2. Theory: Nonlocal Resonance
Model

Review: W. Domcke, Phys.Rep.208(1991)97

Recent application to hydrogen:

1. Cizek, Hord¢ek and Domcke: J.Phys.B. 31 (1998)2571

2. Hor'acek Cizek, Houfek, Koloren¢ and Domcke,
Phys.Rev. A70(2004)O52712

3. Hordcek, Cizek, Houfek, Koloren¢ and Domcke,
Phys.Rev. A73,022701 (2006)
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HBr

Coupling of the resonance state with
the orthogonal continuum.

®4(R, r;) discrete state
<Oy D=1
V4(R) = <4 |H, |Dg>

W(k,R) orthogonal continuum
<(I)d |1Pk > = O
Vic(k.R) = <®4|H,, [Wy >

Nonlocality follows from breakdown
of the BO approximation.



HBr/DBr vibrational excitation
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FIG. 10, Experimental (lower part) and theoretical (upper part)

cross sections for the p=0

1 transition in HBr. (See also expla-

nations in the caption of Iig. 8)
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FIG. 11, Experimental (lower part) and theoretical (upper part)

cross sections for the p=0

nations in the caption of I'ig.

-1 transition in DBr. (See also expla-
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HBr/DBr elastic scattering

LI B | l LI | LI I UL l
HBr
2 DA
- I
=
.2
g
own
®
g
O
2
=2
@
A R A S|
0.2 0.3 0.4 0.5
Electron Energy (eV)

FIG. 8. Vibrationally elastic cross section of HBr. Bottom trace
shows the cross section recorded at 907 using the hemispherical
analyzer spectrometer. Top trace shows the results of the nonlocal
resonance theory, including the broadening caused by thermal rota-
tional excitation of the target at 100 K and convoluted with a
Gaussian (5 meV FWHM) to simulate, in part, the finite experimen-
tal resolution. The dissociative attachment threshold and the thresh-
old for vibrational excitation are marked.
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FIG. 9. Experimental (lower part) and theoretical (upper part)
vibrationally elastic cross section of DBr. Parts of the curves are
shown vertically expanded and offset (the slope of the expanded
part of the experimental spectrum is also slightly reduced) to im-
prove the visibility of the structure. (See also explanations in the
caption of Fig. 8.)



Dissociative electron
attachment
e+tAB—A+B-
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FIG. 13, Experimental (lower part) and theoretical (upper part)
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FIG. 12, Experimental {lower part) and theoretical {upper part dissociative attachment cross sections in DBrat 310 K. The thresh-

dissociative attachment cross sections in HBr at 310 K. The thresh-
olds for dissociative attachment and vibrational excitation are

olds for vibrational excitation, dissociative attachment, and disso-
- _ ) _ ) clative attachment to HBr in the v=1 state are marked. The theo-
marked. The theoretical spectrum is not convoluted with a simu- retical spectrum is not convoluted with a simulated instrumental

lated instrumental profile. profile.



High rotational excitation in AD

Cizek, Hordc¢ek and Domcke:
T Phys.B. 31 (1998)2571
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Role of the rotational excitation
of the target

V(R) =V(R) + J(J+1)/R?
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Role of the rotational excitation

of the target (deuterium)
V(R) =V(R) + J(J+1)/R?
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Table I: Parameters of H,- states

J E, . (relative to DA) T

21 -136 meV 2.4 ps
22 -105 meV 12 ps

23 =75 meV 0.11 ns
24 -4’7 meV 0.9 ns

25 -20 meV 12 ns

26 S meV 0.25 us
27 28 meV 2 ns




Table II: Parameters of D, states

J E,  (relative to DA) T

31 -118 meV 0.13 ns
32 -97 meV 0.70 ns
33 -76 meV 6 ns
34 -55 meV 39 ns
35 -35 meV 0.51 ps
37 18 meV 16 ps
37 2 meV 61 us
38 19 meV 2108 ps




Conclusions Theory

* Narrow resonances were found in both VE and DA cross sections with
lifetimes by many orders of magnitude larger than for previously known
resonances.

- The resonances can well be understood as adiabatic states trapped in
an outer well separated from the e~ + H, autoionisation region by inner
barrier and separated from dissociation intfo H + H- by an outer
centrifugal barrier.

* The decay into the e- + H, channel is controlled by nonlocal dynamics
and estimates from adiabatic (local complex) potential give an order of
maghitude estimate at best.

- The lifetimes of the states reach the values of 0.5 ps and 2108 us
for H,- and D, respectively. Even larger values can be expected for T,

* Our interpretation of the states explains the lack of a molecular-
anion signal in the experiments of Bae et al. 1984,



Measured and calculated lifetimes

PHYSICAL REVIEW A 73, 060501(R) (2006)

Lifetimes of the negative molecular hydrogen ions: H,”, D,”, and HD~
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Final conclusions

The existence of long-lived states of molecular hydrogen
anion with the lifetime of the order of ps were confirmed
by various experiments.

The theory based on the use of the nonlocal resonance model
predicted their existence and explains them as states of high
rotational excitations.
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