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contents

• introduction of visible spectroscopy for 
LHD (Large Helical Device)

• two-dimensional neutral flux measurement 
— Zeeman spectroscopy

• Serpens mode — formation of extremely 
low temperature plasma in confinement 
region

• verification of helium CR model



Introduction



• high wavelength resolution measurement

- shift, detailed line profile, etc.

• wide wavelength range measurement

- intensity distribution of various emission 
lines

plasma diagnostics with spectroscopic 
measurement can be classified into two groups 
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achievements

Large Helical Device (LHD)

specifications

Pin = 15 MW
Te = 10 keV
Ti = 13 keV
ne = 3 × 1020 m−3

major radius 3.5 – 4.2 m
minor radius ∼ 0.6 m

B on axis < 3 T
volume ∼ 30 m3



Zeeman spectroscopy
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• magnetic field strengths are
obtained from Zeeman splittings

• emission locations on line of sight
are derived from magnetic field data

• typically two locations arises from
one field strength because field
strength has a maximum
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• emission locations
are picked up
independently with
two arrays

• apparently false
locations are
designated but
difficult to be
excluded
systematically

• comprehensive
analysis from two
results might be
possible
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• plane is divided into
square cells and define
intensity distribution
function f (x)

• f (x) is determined so as to
minimize the following
evaluation function

ε( f (x)) =
∑
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(
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Serpens mode
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• Serpens mode is
triggered by strong
gas puff

• Hα oscillation
indicates rotation of
luminous small
body

• increase of Hγ/Hα
implies formation
of recombining
plasma



Serpens mode is 
characterized by complete 
divertor detachment and 
emergence of narrow 
luminous body in confined 
region
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• single channel
measurement with
time resolution of 5 ms
is made

• wide wavelength
range is covered, and
all the Ballmer series
lines are involved

• spectra show various
faces according to
plasma conditions
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• distribution implies
ionizing plasma in the
steady-state phase (a)

• determination of plasma
parameters is difficult

• in the plasma terminating
phase (d), pure
recombining plasma is
observed

• plasma parameters are
derived with precision
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• distribution suggests
recombining plasma at
intensity maximum (b)

• result at intensity
minimum (c) is well
reproduced with
superposition of ionizing
and recombining plasma
components
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• with moderate resolution
measurement, lines from
higher levels are resolved

• line profiles are found
dominated by Stark
broadening

• synthetic spectrum with
already derived Te and ne
agrees with measurement

• LTE is assumed for n(p)’s
and Stark broadening is
based on Stehlé (1999)



He CR model
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• according to Schweer
(1992), 667.8/728.1 and
728.1/706.5 reflect ne and
Te, respectively

• Te and ne are estimated
with a help of CR model
calculations
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• L-changing data plays an
essential role especially
for ne measurement
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• Te and ne are determined so that the
following function is minimized
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where κi stands for two ratios
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• agreement is satisfactory, but there still exists
some inconsistency

• reason for the discrepancy is unclear



• owing to improvements in observation 
system and quite stable plasma production,  
highly quantitative measurements have been 
realized

• as for analysis, thanks to recent accurate 
atomic data, reliability of the spectroscopic 
diagnostics has been elevated

Summary


