

saclay

Numerical Modeling for Intense Laser Physics

Edouard AUDIT and Guy Schurtz

Intense Laser Physics

dapnia

Institut Laser et Plasmas (ILP)

saclay Ø Advanced concept for fusion Ø fusion plasmas diagnostics

Ø Physics in extreme conditions Ø Numerical Modelling

Ø Lasers

Opening of large Laser facilities

- § LIL, LMJ
- § LULI2000, Alisé, PALS, ...

dapnia

ØInertial Fusion for energy

Ø Laboratory Astrophysics

saclay Ø Physics of warm dense matter

- Ø Particles acceleration
- Ø EOS and Opacities
- Ø ...

La ligne d'Intégration Laser (LIL)

Ø The LIL is the prototype of the LMJ Ø It has 4 beams (soon 8).

saclay

Le bâtiment LIL c'est :

- 8500 m² de surface au sol
- 150 m de long
- 70 m de large
- Salle d'expérience 500 m²
 20 m de haut

Physics on the LIL has started

dapnia

saclay

First experiments have started in 2005

The laser mégajoule (LMJ)

Ø 1.8 MJ on target at $\lambda_{laser} = 351$ nm

Ø 240 laser beam,

dapnia

saclay

10 000 optiques66 tonnes de verre240 faisceaux laser10 000 moteurs10 000 m² de traitement440 MJ électriques stockés2000 caméras

The Laser Mégajoule (LMJ)

dapnia CCC saclay

bâtiment : 300 x 150 m² 4 halls laser 240 faisceaux 40x40 cm² en 60 quads

hall d'expériences : <u>h 40 m - Φ 60 m</u> Salle d'expérience Ø ~ 60 m,H ~ 40 m

600 tirs / an dont 20 avec fusion cible : Φ 2.5 mm

ICAMDATA - October 17, 2006

dapnia

Micro-physics Studies :

§Opacities

saclay

§EOS

§ Transport Coefficients, ...

« Dynamical » studies :

The objective is to scale down flows of interest to reproduce them in a laboratory experiment.

§ Radiative shocks

§ Hydrodynamical Instabilities

§ Jets, ...

Simulation Experience

Observation

The codes developped at ILP address

dapnia

saclay

- Hydrodynamics
- Radiative Transport
- Conduction
- Transport by particules
- Combustion physics

§ EOS

S Opacities

S Transport coefficients

§ Reaction rates

The objectives are :

- Target design
- Interpretation of experiments
- Theoritical studies

dapnia CEO saclay

A 1 G€ project requires a **predictive** design code.

The simulations tools must be validated against dedicated experiments and theoritical benchmarks

These tools must be used by a large community which should gain confidence in there predictiveness.

In order to achieve these goals the ILP promotes:

Ø Code developments for the ILP community

Ø Benchmark program for these code

Ø Dedicated validation experiments.

Radiation-hydrodynamics codes

dapnia

• 2D lagrangian (ALE), godunov type method

• multi-material hydro, non-local electron heat conduction, radiation transport (multi-groups diffusion), 3D laser raytracing, combustion

CHIC

- saclay
- tabulated EOS and opacities.
 - developped at CELIA
 - code dedicated to target design

HERACLES

- 3D eulerian code, godunov type method
- hydro, heat conduction, radiation transport (grey moment model), combustion
- tabulated EOS and opacities
- developped at SAp (CEA)
- code used both for astrophysics and laser experiment studies

The CHIC code (CELIA)

Physics of Inertial Confinement fusion (ICF)

Cylindrical Implosion using the CHIC code

dapnia CCC saclay

Opacities Measurements

- Test numerical codes and methods used to compute opacities
- Often hydrodynamics is needed to determine the density and the temperature

Opacities Measurements

Radiative Shock experiment

ICAMDATA – October 17, 2006

Modelling of the experiment using HERACLES

Electron heat flow experiment on LIL

dapnia CCC saclay Test theoretical heat flow model with include non maxwellian and magnetic fields effect Schurtz – Nicolai["](2000) Nicolai-Feugeas-Schurtz (2005)

Time resolved spectra for 3 laser energies

2D CHIC simulations

5000 Energie (eV) 6000

ICAMDATA - October 17, 2006

0-4000

conclusions

dapnia

« Non Local theory in itself fails. It has to be combined with magnetic fields calculations. In this case, the agreement with measurements is startling. »

The ODALISC Project

Opacity Database for Astrophysics, Laboratory astrophysics and Inertial fusion SCience

The objectives are to construct a shared spectral opacity database : Ødedicated to radiation-hydrodynamics calculations Ødifferent opacity model available with the same interfac Øshared between the co-working labs.

People in ODALISC

S CEA/DAPNIA : Edouard Audit, Jean-Paul Lefevre, Daniele Pomarede Bruno Thooris

CE)

dapnia

saclay

§ CEA/DRECAM : Thomas Blenski, Michel Poirier, Frederic Thais

§ CEA/DAM/DPTA: Christophe Blancard, Philippe Cosse (see poster)

§ Observatoire de Paris (LUTH) : Frank Delahaye, Claude Zeippen

S CELIA : Olivier Peyrusse, Guy Schurtz